\(\int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx\) [161]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 136 \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=-\frac {5 \arcsin (\cos (a+b x)-\sin (a+b x))}{32 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{32 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{24 b}+\frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b} \]

[Out]

-5/32*arcsin(cos(b*x+a)-sin(b*x+a))/b-5/32*ln(cos(b*x+a)+sin(b*x+a)+sin(2*b*x+2*a)^(1/2))/b-5/24*cos(b*x+a)*si
n(2*b*x+2*a)^(3/2)/b+1/6*sin(b*x+a)*sin(2*b*x+2*a)^(5/2)/b+5/16*sin(b*x+a)*sin(2*b*x+2*a)^(1/2)/b

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {4386, 4387, 4391} \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=-\frac {5 \arcsin (\cos (a+b x)-\sin (a+b x))}{32 b}+\frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}-\frac {5 \sin ^{\frac {3}{2}}(2 a+2 b x) \cos (a+b x)}{24 b}-\frac {5 \log \left (\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}+\cos (a+b x)\right )}{32 b} \]

[In]

Int[Cos[a + b*x]*Sin[2*a + 2*b*x]^(5/2),x]

[Out]

(-5*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/(32*b) - (5*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]]
)/(32*b) + (5*Sin[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(16*b) - (5*Cos[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/(24*b) + (
Sin[a + b*x]*Sin[2*a + 2*b*x]^(5/2))/(6*b)

Rule 4386

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[2*Sin[a + b*x]*((g*Sin[c +
 d*x])^p/(d*(2*p + 1))), x] + Dist[2*p*(g/(2*p + 1)), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4387

Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[-2*Cos[a + b*x]*((g*Sin[c
+ d*x])^p/(d*(2*p + 1))), x] + Dist[2*p*(g/(2*p + 1)), Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fr
eeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4391

Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rubi steps \begin{align*} \text {integral}& = \frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b}+\frac {5}{6} \int \sin (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x) \, dx \\ & = -\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{24 b}+\frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b}+\frac {5}{8} \int \cos (a+b x) \sqrt {\sin (2 a+2 b x)} \, dx \\ & = \frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{24 b}+\frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b}+\frac {5}{16} \int \frac {\sin (a+b x)}{\sqrt {\sin (2 a+2 b x)}} \, dx \\ & = -\frac {5 \arcsin (\cos (a+b x)-\sin (a+b x))}{32 b}-\frac {5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 a+2 b x)}\right )}{32 b}+\frac {5 \sin (a+b x) \sqrt {\sin (2 a+2 b x)}}{16 b}-\frac {5 \cos (a+b x) \sin ^{\frac {3}{2}}(2 a+2 b x)}{24 b}+\frac {\sin (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x)}{6 b} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.72 \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=\frac {-5 \left (\arcsin (\cos (a+b x)-\sin (a+b x))+\log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right )\right )+\frac {2}{3} \sqrt {\sin (2 (a+b x))} (14 \sin (a+b x)-3 \sin (3 (a+b x))-2 \sin (5 (a+b x)))}{32 b} \]

[In]

Integrate[Cos[a + b*x]*Sin[2*a + 2*b*x]^(5/2),x]

[Out]

(-5*(ArcSin[Cos[a + b*x] - Sin[a + b*x]] + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]) + (2*Sqr
t[Sin[2*(a + b*x)]]*(14*Sin[a + b*x] - 3*Sin[3*(a + b*x)] - 2*Sin[5*(a + b*x)]))/3)/(32*b)

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 71.55 (sec) , antiderivative size = 221760772, normalized size of antiderivative = 1630593.91

method result size
default \(\text {Expression too large to display}\) \(221760772\)

[In]

int(cos(b*x+a)*sin(2*b*x+2*a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 290 vs. \(2 (118) = 236\).

Time = 0.28 (sec) , antiderivative size = 290, normalized size of antiderivative = 2.13 \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=-\frac {8 \, \sqrt {2} {\left (32 \, \cos \left (b x + a\right )^{4} - 12 \, \cos \left (b x + a\right )^{2} - 15\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} \sin \left (b x + a\right ) - 30 \, \arctan \left (-\frac {\sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} {\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) + 30 \, \arctan \left (-\frac {2 \, \sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) - 15 \, \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt {2} {\left (4 \, \cos \left (b x + a\right )^{3} - {\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right )}{384 \, b} \]

[In]

integrate(cos(b*x+a)*sin(2*b*x+2*a)^(5/2),x, algorithm="fricas")

[Out]

-1/384*(8*sqrt(2)*(32*cos(b*x + a)^4 - 12*cos(b*x + a)^2 - 15)*sqrt(cos(b*x + a)*sin(b*x + a))*sin(b*x + a) -
30*arctan(-(sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x + a))
/(cos(b*x + a)^2 + 2*cos(b*x + a)*sin(b*x + a) - 1)) + 30*arctan(-(2*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a)) -
 cos(b*x + a) - sin(b*x + a))/(cos(b*x + a) - sin(b*x + a))) - 15*log(-32*cos(b*x + a)^4 + 4*sqrt(2)*(4*cos(b*
x + a)^3 - (4*cos(b*x + a)^2 + 1)*sin(b*x + a) - 5*cos(b*x + a))*sqrt(cos(b*x + a)*sin(b*x + a)) + 32*cos(b*x
+ a)^2 + 16*cos(b*x + a)*sin(b*x + a) + 1))/b

Sympy [F(-1)]

Timed out. \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=\text {Timed out} \]

[In]

integrate(cos(b*x+a)*sin(2*b*x+2*a)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=\int { \cos \left (b x + a\right ) \sin \left (2 \, b x + 2 \, a\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(b*x+a)*sin(2*b*x+2*a)^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(b*x + a)*sin(2*b*x + 2*a)^(5/2), x)

Giac [F]

\[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=\int { \cos \left (b x + a\right ) \sin \left (2 \, b x + 2 \, a\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(b*x+a)*sin(2*b*x+2*a)^(5/2),x, algorithm="giac")

[Out]

integrate(cos(b*x + a)*sin(2*b*x + 2*a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (a+b x) \sin ^{\frac {5}{2}}(2 a+2 b x) \, dx=\int \cos \left (a+b\,x\right )\,{\sin \left (2\,a+2\,b\,x\right )}^{5/2} \,d x \]

[In]

int(cos(a + b*x)*sin(2*a + 2*b*x)^(5/2),x)

[Out]

int(cos(a + b*x)*sin(2*a + 2*b*x)^(5/2), x)